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After the euphoria

® Roughly a year ago, the announcement of the Higgs discovery generated great excitement

® With the excitement reduced, it’s time to analyze the discovery

* |s it the Standard Model Higgs? Do its couplings deviate!?

® |s theory in shape to distinguish between these possibilities?

Outline

* Motivation

* Inclusive Higgs production
* H+jet @NNLO in QCD
* Summary
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Discovery is the beginning

Remarkable progress, from discovery to rapidly sharpening our

understanding of this new state

ATLAS Preliminary Vs=7TeV, [Ldt=4.6-4.81fb"
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Role of theory
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* Precision SM theory played a crucial role in the hunt for the Higgs boson

| LHC, Vs=7 TeV
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Higgs predictions receive famously large
perturbative corrections

Harlander, Kilgore; Anastasiou, Melnikov;

Ravindran, Smith, van Neerven 2002-2003
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Without NNLO predictions, wouldn’t have even
realized we were probing the SM Higgs at the
Tevatron!

Harlander
First three years of the LHC, Mainz, 2013




10°

10

Continued importance of precision theory
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LHC Higgs cross section working group
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Small deviations from SM predictions may be a crucial window into physics beyond

the Standard Model
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Much work done for the total cross section §

* Effects of soft-gluon resummation at Next-to-next-to Catani, De Florian,
leading logarithmic (NNLL) accuracy (about 6-15%) Nason, Grazzini (2003)

Moch,Vogt (2005)

* Partial N3LO corrections (soft gluon approximation) Anastasiou, Duh, Dulac Mislberger (2013)

e Approximate N3LO in QCD by matching two limits: Ball, Bonvini,Forte, Marzani,

soft gluons and highly energetic gluons Ridolfi (2013)

* Resummation of TT? factors through appropriate Ahrens, Becher, Neubert, Yang (2008)
matching condition

o : , o Aglietti et al. (2004)
Two-loop EWV corrections are also known (effect is about O(5%)) Degrassi, Maltoni (2004)

Passarino et al. (2008)

* Mixed QCD-EW effects evaluated in EFT approach Anastasiou, R.B., Petriello (2008)

Keung, Petriello (2009);

* EVWV effects for real radiation O. Brein (2010)




Higgs in association with jets

* Higgs cross-sections in pp—H—>WWV are binned according

to the jet multiplicity to beat the background

* The measured value of pp—=H—="WW production cross section results from combining

0 jet, | jet and 2 jet cross sections. Each of them has its own uncertainty

* What we knew so far: H+0j @ NNLO, H+1j and H+2j @ NLO
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More work needed for differential production

R ——

* Many issues in the description of Higgs with jets

Source (1-jet) Signal (%) Bkg. (%)

-jetincl. gek signal ren./tact. scale 2
2-jetincl. ggF signal ren./fact. scale 1

Parton shower/ U.E. model (signal only) 10

b-tagging ethciency

PDF model (signal only)
QCD scale (acceptance) 4
Jet energy scale and resolution l
W+jets fake factor

WW theoretical model
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J. Qian, ATLAS

Theory uncertainties becoming a limiting
factor in many analyses, especially WW
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/ LHC,7 TeV
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Banfi et al, 2012

Significant uncertainties exist when
exclusive jet bins are used

Urgently need NNLO for H+jets to resolve these issues
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Structure of NNLO cross sections §

® Need the following ingredients for H+1j @ NNLO cross section
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Gehrmann, Jaquier, Glover, Koukoutsakis (201 1) Badger, Glover, Mastrolia, Williams (2009) Del Duca, Frizzo, Maltoni;

Dixon, Glover, Khoze (2004)

® All ingredients were available, some even for a while, what stopped us from having this
calculation done before now!?

e IR singularities cancel in the sum of real and virtual corrections and mass factorization
counterterms but only after phase space integration for real radiations

® Virtual corrections have explicit IR poles, whereas real corrections have implicit IR poles
that need to be extracted.

e Need a procedure to extract real radiation singularities before phase-space integration.
This is a highly non-trivial task.




First NNLO QCD results to processes with
both colored initial and final states

* After more than a decade of research we finally know how to generically

handle NNLO QCD corrections to processes with both colored initial and
final states
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Sector decomposition
———

® One method successfully used in the past to obtain NNLO cross sections is

sector decomposition

3
sttt

Binoth, Heinrich; Anastasiou, Melnikov, Petriello (2003)

* Basic idea: introduce explicit parameterizations of phase space in which the
poles in € can be easily extracted via a plus-distribution expansion

pp—~H+X
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* ete 2 jets
Anastasiou, Melnikov, Petriello (2004)

* Higgs production at hadron colliders
Anastasiou, Melnikov, Petriello (2005)

* Electroweak gauge boson production
Melnikov, Petriello (2006)
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The downside {

* To illustrate the drawbacks, use Higgs production as an example

* Invariants that occur in this topology :si3, s24, 5134, s34. These contain the collinear

singularities pi||ps, p2||p4, p3||p4, pil[ps3||p4

* Initial uses of sector decomposition attempted to find a global parameterization of

phase space to handle all of these singularities at once

* However, can only have: pl||p3 & p2||p4 or pl||p3||p4. Not all invariants above can have
collinear singularities simultaneously

* The attempt to find suitable global parameterizations meant that one would need to find
an entirely new parameterization for Higgs+tjet, since the additional final-state parton leads
to new singularities; can’t recycle information from differential Higgs production

12
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Sector-improved subtraction scheme {

* A combination of sector decomposition and FKS (Frixione,Kunszt,Signer)

ideas makes the extraction of singularities more systematic Czakon (2010)

* @ NNLO the elementary building block is the double unresolved phase space where
two unresolved particles can become soft or collinear to one or two hard directions

* partition the phase space such that in each partition only a subset of particles leads to

singularities: only two soft singularities can occur, and only one triple collinear or one
double collinear singularity can occur.

* we can now pick a local parametrization for each partition

* the partitioning is done using energies and angles of the unresolved particles w.r.t.

the hard parton(s) emitting them , . . , ,
; * disentangling singularities as energies and angles vanish

leads to a tree of sectors.

* Need to consider the following partitions for H+1j:

- triple collinear partitions: (5[|4|[1), (5]|4]|2) , (5]|4]|3) ;

n ~ angles

£ ~ energies

- double collinear partitions: (5||1,4|2), (5]|1,4/|3), (5|3,4||1),
(51134112112 4/11).(51124013) oo .

g3

G4

13



H+jet @ NNLO: gg-channel 'g

T m——— ———————
Checks:

® Two separate calculations were performed and agreement was found on all the steps

* Correctness of the limits: the subtraction terms should approach the full amplitudes in the
singular limit. Subtraction terms are constructed from reduced matrix elements using QCD
factorization of soft and collinear singularities. This is a non-trivial check since the two

contributions are calculated independently from each other.

* Numerical cancellation of poles. This is another non-trivial check since all the ingredients
including renormalization and collinear subtraction contribute. A typical cancellation of poles

is 10-* for ep2 and 1073 for ep™'.
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H+jet @ NNLO: gg-channel ';
WS—— ————
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* We compute partonic cross sections for gg—H+jet at LO, NLO, NNLO in QCD
* We use the kr-jet algorithm, Pr; > 30GeV, R=0.4, mH=125GeV

* Hadronic cross sections for pp—H+jet at 8TeV LHC are produced by convoluting with

PDFs.We present results using NNPDFs for the scale choices mn/2, mu, 2mn
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H+jet @ NNLO: gg-channel
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Summary
PIRR——— ———
* We have moved beyond the discovery stage of the Higgs and have

begun analyzing the discovered particle

* SM predictions for the Higgs are the benchmark against which all

other possibilities will be compared

* Urgently need Higgs+jet at NNLO because of large theoretical

systematic errors in the |-jet bin, particularly in the WWV channel

* First results for gg— H+jet production at NNLO in QCD for

realistic jet algorithms.

* We observe a large K factor, a 30% enhancement w.r.t. NLO for

MuU=—my

* Significant reduction of scale dependence from 50% at LO to 20%
at NLO to less than 5% at NNLO.
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